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a b s t r a c t

In the variational multiscale (VMS) approach to large eddy simulation (LES), the governing
equations are projected onto an a priori scale partitioning of the solution space. This gives
an alternative framework for designing and analyzing turbulence models. We describe the
implementation of the VMS LES methodology in a high order spectral element method with
a nodal basis, and discuss the properties of the proposed scale partitioning. The spectral
element code is first validated by doing a direct numerical simulation of fully developed
plane channel flow. The performance of the turbulence model is then assessed by several
coarse grid simulations of channel flow at different Reynolds numbers.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Large eddy simulations (LES) provides a physically appealing framework for turbulent flow prediction, where the three-
dimensional and time-dependent motion of the largest turbulent scales are solved directly, with complete time and space
resolution. These scales are in general associated with the most energetic motion of the turbulence field and it is ideally only
the least energetic motion that need to be modelled. The concept is therefore well suited to confront the scale complexity
and transient behaviour inherent to turbulent flows.

In traditional LES, large- and small-scale motion are separated by applying a spatial filtering operation to the Navier–
Stokes equations before discretization. Hence, there are two layers of approximation, filtering and truncation, that both
contribute to the modelling error. Filtering may be explicitly carried out, or only implicitly assumed. The result is a set of
equations for the large-scale motion. The residual motion, i.e. motions on scales that are smaller than the filter width, appear
in these equations as a residual stress term. This term is a priori unknown, and although the intention is not to describe the
residual motion in itself, the term must be modelled to incorporate the effect of the residual motion on the resolved scales.

There are several conceptual issues in filter-based LES that have to be addressed. For instance, filtering and spatial differ-
entiation do not in general commute on bounded domains or for non-uniform grids, so careful analysis is needed to obtain
the correct form of the equations. It is also not obvious how to prescribe correct boundary conditions for the filtered velocity
. All rights reserved.
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at solid walls. Another unwarranted character of filter-based LES models is that the residual stress model may adversely af-
fect the resolved part of the energy spectrum. These issues have been the subject of a considerable amount of research. For
example have Carati et al. [1] analysed the error contributions from the two layers of approximation – filtering and trunca-
tion. They show that the filtering error can be expressed in terms of the resolved velocity field and that the purpose of the
subgrid model is to account for the effect of the unresolved motion, i.e. the truncation errors. In general, the lesson learned is
that LES works well in cases where the rate-controlling dynamical processes occur at the largest (resolved) scales of motion,
or equivalently in flows where the unresolved scales, and consequently the model, only plays a secondary dynamical role.

In this paper we consider a different approach to LES, the variational multiscale (VMS) LES method originally proposed by
Hughes et al. [2]. This formulation is based on a variational (or weak) form of the Navier–Stokes equations in unfiltered form.
Consequently, there is no filtering error and it is evident that the role of the model term is to compensate for the truncation
errors, fully in line with the analysis in [1]. The VMS LES method employs a scale partitioning of the solution space, and var-
iational projection of the Navier–Stokes equations onto the different scale ranges. Since the scale partitioning operators do
not act on the governing equations, the same way as a filter does, commutation between scale partitioning and differenti-
ation is not an issue. The projected equations, given in Section 2, contain all the terms that represent interaction between the
scales, and are therefore a well suited tool for clarifying assumptions and prescribing models for the LES. In addition, one of
the scale partitioning operators are chosen to coincide with the discretization.

The scale partitioning used in this paper divides the solution space into three subspaces, the large resolved scales, the
small resolved scales, and the unresolved scales. The definition of resolved scales in this context is the spatial scales that
can be represented by the numerical discretization. The scale partitioning is sketched in Fig. 1. In this figure, as well as in
the rest of this paper, ‘‘small” scales refer the subspace consisting of small resolved scales, even though the scales are not
necessarily physically small when the resolution is coarse.

We implement the resulting VMS LES formulation in a spectral element method for the solution of the Navier–Stokes
equations. Spectral element methods are related to both spectral methods and finite element methods, and combine high
order accuracy with geometric flexibility. These properties makes it attractive to develop good turbulence models for the
spectral element method, because the potential for providing good LES results in more realistic cases, including more com-
plex geometries, is there if the right model is found. Another important point is that the high order accuracy provides us with
an attractive framework for model development in which the numerical errors can be controlled, such that the true perfor-
mance of the model can be assessed. In this paper we focus on the simple geometry of plane channel flow, a much used
example in turbulence modelling with good reference solutions available.

The first implementations of the variational multiscale LES method [3–5] used global spectral methods. These methods
naturally employ an orthogonal modal basis, such that the scale partitioning becomes straightforward. The method has also
been implemented in the context of other numerical schemes, such as finite element methods [6–8] and finite volume
methods [9]. The potential of the VMS methodology has been demonstrated by several numerical studies, for various flow
configurations, in which different VMS implementations have been shown to perform comparable or better than the classical
dynamic Smagorinsky procedure [3–5,10,11]

Our spectral element code uses an element-wise discretization with nodal basis functions that contain information on all
the scales. The partitioning into large and small scales is done through the use of an element-by-element transformation into
the Legendre modal basis functions, rather than by using a global spectrum.

In the following sections we will discuss the variational multiscale method as a turbulence modelling tool, and describe
the spectral element implementation of the method. Finally we will present computed results from both a high-resolution
direct numerical simulation (DNS) and coarse grid VMS LES for fully developed turbulent flow in a plane channel at frictional
Reynolds numbers Res ¼ 180;550, and 950. The latter case represents, to our knowledge, the highest Reynolds number that
has been reported in a VMS LES setting. The computed results show that, even with simple modelling applied to the small-
scale equations, the performance of the methodology is promising.
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Fig. 1. Schematic of the turbulent energy spectrum as a function of wavenumber, with scale partitioning.
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2. The variational multiscale method

The variational multiscale LES method was introduced by Hughes et al. [2] and later elaborated by Collis [12]. We will
outline the method following Collis, to shed light on the modelling assumptions employed in the derivation of the model.

The Navier–Stokes equations describing the dynamics of a viscous, incompressible fluid are
@u
@t
þ u � ru ¼ � 1

q
rpþ mr2uþ f ; ð1aÞ

r � u ¼ 0; ð1bÞ
where the independent variables are the velocity, u ¼ ðu;v;wÞ, and the pressure, p. The kinematic viscosity is denoted by m,
and f is a body force term. For ease of presentation of the variational multiscale method we assume homogeneous Dirichlet
boundary conditions for the velocity.

We can construct the weak, or variational, formulation by choosing test and trial functions in the same function space V.
Note however that in general the test and trial spaces will differ at the boundary because we require the test functions to
vanish there, while u may not. Let
U ¼ ðu; pÞ 2 V; W ¼ ðw; qÞ 2 V; F ¼ ðf ;0Þ:
We take the inner product of W with Eq. (1b) (written in the compact form NðUÞ ¼ F) to obtain the weak Navier–Stokes
operator:
hW;NðUÞi � LðW ;UÞ � Rðw;uÞ ¼ hW; Fi; ð2Þ
comprising the bi-linear Stokes operator
LðW;UÞ � w;
@u
@t

� �
� hr �w;pi þ hrsw;2mrsui þ hq;r � ui; ð3Þ
and non-linear advection represented by the Reynolds projection
Rðw;uÞ ¼ Bðw;u;uÞ: ð4Þ
The components of the symmetric rate of strain are defined as
ðrsuÞij ¼
1
2

@ui

@xj
þ @uj

@xi

� �
; ð5Þ
and B is the tri-linear term
Bðw;u;vÞ � hrw;uvi: ð6Þ
To take into account the multiscale representation, we write the solution space V as a disjoint sum
V ¼ V � eV � bV ;

in which V and eV comprise the large and small resolved scales, respectively, whereas bV contains the unresolved scales.

Decomposing the test and trial functions in these spaces gives
U ¼ U þ eU þ bU ; W ¼W þ fW þ cW ;
and we can develop a set of scale-projected equations from the projections
hW;NðUÞi ¼ hW; Fi; hfW ;NðUÞi ¼ hfW ; Fi; hcW ;NðUÞi ¼ hcW ; Fi: ð7Þ
Using (3)–(6) and introducing the cross stress term
Cðw;u;u0Þ ¼ Bðw;u;u0Þ þ Bðw;u0;uÞ; ð8Þ
(7) can be written out as
LðW;UÞ þ LðW; eUÞ � Rð �w; �uÞ � hW; Fi � Rð �w; ~uÞ � Cð �w; �u; ~uÞ
¼ �LðW ; bUÞ þ Rð �w; ûÞ þ Cð �w; �u; ûÞ þ Cð �w; ~u; ûÞ; ð9aÞ

LðfW ; eUÞ þ LðfW ;UÞ � Rð~u; ~uÞ � hfW ; Fi � Rð~u; �uÞ � Cð~u; �u; ~uÞ

¼ �LðfW ; bUÞ þ Rð ~w; ûÞ þ Cð~u; �u; ûÞ þ Cð ~w; ~u; ûÞ; ð9bÞ

LðcW ; bUÞ þ LðcW ;UÞ þ LðcW ; eUÞ � Rðŵ; ûÞ � Cðŵ; �u; ûÞ � Cðŵ; ~u; ûÞ

¼ Rðŵ; �uÞ þ Rðŵ; ~uÞ þ Cð bw; �u; ~uÞ þ hcW ; Fi: ð9cÞ
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We have written the first two of these equations in a form such that all terms that depend on the unresolved scales are
collected in the right-hand sides. It is thus evident that there is an effect of the unresolved scales on the resolved scales. In
the original paper by Hughes et al. [2], the modelling assumptions were not stated, but the issue was clarified by Collis [12],
who showed that essentially the following assumptions result in a method that is identical to the method proposed by
Hughes:

� The separation in wavenumber space between large and unresolved scales is sufficiently large so that there is negligible
direct dynamic influence from the unresolved scales on the large scales.

� The dynamic impact of the unresolved scales on the small scales is on average dissipative in nature.

The consequence of the first assumption is that the right-hand side of (9a) is set to zero, while the effect of the second
assumption is to replace the right-hand side of (9b) with a dissipative model term. The simple Smagorinsky-type model
is in an averaged sense fully consistent with the second assumption. In order to approximate the temporal behaviour at
the cut-off, a more refined modelling approach would be needed. This is however outside the scope of the present study.

With these assumptions, the LES model is only applied to the small-scale projection equation. Different implementations
of this method by Hughes and coworkers [3,4], by Ramakrishnan and Collis [5], and by Jeanmart and Winckelmans [13,14]
have produced encouraging results for simple model problems.

Our objective is to present an implementation of the VMS LES formulation in the spectral element method, so we consider
it outside the scope of the present paper to discuss alternatives to the two assumptions given above. We merely note in pass-
ing that the variational multiscale methodology provides a framework well suited for more sophisticated model formulation.

Bearing the above in mind, we can formulate the variational modelled equations. The projection onto the unresolved
scales is naturally omitted, and the resulting set of equations is
LðW;UÞ þ LðW; eUÞ � Rð �w; �uÞ � Rð �w; ~uÞ � Cð �w; �u; ~uÞ � hW; Fi ¼ 0; ð10aÞ

LðfW ; eUÞ þ LðfW ;UÞ � Rð ~w; �uÞ � Rð ~w; ~uÞ � Cð ~w; �u; ~uÞ � hfW ; Fi ¼ �hrs ~w;2mTrs ~ui: ð10bÞ
The terms that couple the different scales are evident in (10b); all the original terms coupling the large and small resolved
scales are retained, whereas the small-scale projection equation has been supplemented with a dissipative term on the right-
hand side that accounts for the interactions between the small and the unresolved scales.

We are, however, chiefly concerned with the complete resolved solution eU ¼ U þ eU , not with the large and small scales
per se. Adding the large- and small-scale projections we obtain
fW ;NðeUÞD E
þ hrs ew;2mTrs ~ui ¼ hfW ; Fi: ð11Þ
We note that in this equation, all the interaction terms between the large and the small scales are accounted for in the
advection operator R, which is part of the first term on the left-hand side in (11). The projected cross and Reynolds stress
terms that appear in the large- and small-scale Eq. (10b) can be useful for analysis and turbulence modelling, but do not nec-
essarily impact on the implementation of the method. The variational formulation is hence primarily used as a framework
for clarifying the modelling assumptions and selecting appropriate model terms. The essential feature of the method is that
the turbulence modelling should be confined to the small scales. As long as a suitable scale partitioning can be performed on
the solution space, the methodology can in principle be applied to any discretization, as indicated by Hughes et al. [3].

2.1. Some related methods

There are other methods that share some of the elements of the present VMS LES method. One method is the spectral
vanishing viscosity (SVV) method, first introduced for hyperbolic conservation laws by Tadmor [15]. For comparison with
VMS LES, we use the spectral element formulation by Xu and Pasquetti [16] and restrict the discussion to the one-dimen-
sional case without coordinate scaling, to avoid technicalities. The SVV term of [16] is given in the form
eN Q1=2ð@xuNÞ;Q 1=2ð@xvNÞ
D E

L2ðKÞ
;

where Q is an operator that selects only the modes with high wave numbers – with a smooth spectral representation from
zero on low wave numbers to one on high wave numbers. If we view Q1=2 as a small-scale extraction operator (albeit differ-
ent from the one used in this paper), we can write the term Q1=2ð@xuNÞ as gru, and the SVV method as
fW ;NðeUÞD E
þ eNhgrw;grui ¼ hfW ; Fi ð12Þ
in the notation of this paper. There are four main differences between (12) and the present VMS LES method, namely the
reversed sequence of the (non-commuting) scale extraction and differentiation operator; the use of the symmetric gradient
(5); the form of the small-scale extraction operator (defined in Section 3.2); and the difference between eN ¼ Oð1=NÞ and mT .
The particular form of mT is discussed in Section 3.5, we just note here that it contains a 1=N2-factor (through the term D02)
and a velocity gradient, which makes it vary through the domain. However, it should be noted that apart from the sequence
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of the operators, the SVV method in the form (12) could have been formulated within the VMS LES formalism. The principle
of basing the scale-dependent operators on the local Legendre modal representation on each element is also common to both
methods.

Vreman [17] describes a filter-based LES method that is analogous to VMS LES in the sense that the modelled subgrid
term is filtered twice to only contain ‘‘small-scale resolved” contributions. Another method, which does not involve inter-
changing filtering and differentiation operators, is also described by Vreman in the same paper. The comparison of the
two methods illustrates the differences and similarities between VMS and ‘‘traditional” LES.

Jeanmart and Winckelmans [13,14] use essentially the same approach as Vreman to develop the ‘‘Regularized Variational
Multiscale Model”. In this method, a smooth discrete high-pass filter is employed to extract the small scales and to compute
the VMS model term, which is evaluated explicitly. Note that by using a smooth filter, the large and small function spaces are
no longer necessarily disjoint as in the original derivation of the VMS method.

3. Incorporation of VMS LES in the spectral element method

In this section we describe the implementation of a VMS LES model in a high order spectral element method for the solu-
tion of the incompressible Navier–Stokes equations. More basic details about the spectral element method can be found in
[18,19].

3.1. Spectral element Navier–Stokes solver

To solve the Navier–Stokes Eq. (1b) we employ an implicit-explicit time splitting in which we integrate the advective
term explicitly, while the diffusive term, the pressure term, and the divergence equation are treated implicitly. After discret-
ization in time we can write (1b) in the form
ðaI � mr2Þunþ1 ¼ �rpnþ1 þ gðf nþ1;un;un�1; . . .Þ; ð13aÞ
r � unþ1 ¼ 0; ð13bÞ
in which the explicit treatment of the advection term is included in the source term g. In the actual implementation we use
the second order (in time) accurate formula BDF2, which gives a ¼ 3=2Dt in (13b), while we compute the advective contri-
butions according to the operator-integration-factor (OIF) method [20].

The spatial discretization is done with a spectral element method [21,22], where the weak formulation of (13b) is solved
on a set of non-overlapping hexahedral elements. Within each element, trial and test functions are constructed as tensor
products of Lagrangian interpolants of Legendre polynomials. The integrals in the weak formulation are calculated by the
Gauss–Lobatto–Legendre (GLL) or Gauss–Legendre (GL) integration formulas, which can be viewed as discrete inner prod-
ucts. To avoid spurious pressure modes, the polynomial order of the pressure representation is taken to be two orders lower
than for the velocity components (the ‘‘PN � PN�2” method [22]).

The discrete inner products are consistent with the approximation error (Section 9.3 [23]) for the linear terms of (13b).
However, the explicitly treated advection sub-problem contains non-linear terms, which are a potential source of aliasing
errors. If not controlled, such errors may be detrimental to the stability of the method. The most fundamental approach
to de-aliasing is to perform over-integration [24] – that is, to over-sample by a factor 3/2 and calculate the quadrature at
this refined grid for the inner products containing non-linear terms. This ensures that the numerical quadrature error from
the integration of the non-linear term is consistent with the other quadrature errors in the method. The errors corrected by
over-integration can represent both positive and negative energy, so over-integration is not a dissipative mechanism. How-
ever, it is the positive energy errors that are potentially damaging for a marginally resolved calculation.

The overhead involved depends on the amount of the total computational time that is originally spent on the advection
part, but for the calculations presented here, over-integration typically leads to an increase of around 20% of computational
time.

An alternative, and computationally more efficient approach, is to use polynomial filtering of the solutions as proposed by
Fischer and Mullen [25], where a simple filter operator with negligible computational cost is applied to the solution at every
time-step. The effect in the spectral space on each element is to transfer a certain fraction (the filter strength) of the energy
on the highest order basis polynomial in each element over to the third-highest order polynomial [26]. By this operation, the
pile-up of energy on the highest order polynomial is reduced, while the values at the element boundaries are unchanged.
Filter strengths as small as 1–5% can have positive effects on the solution. As for over-integration, this is not a dissipative
mechanism, as it can either increase or decrease the energy [26]. The stabilizing effect is not as strong as for over-integration,
but the method is attractive because of its simplicity. If desirable, the methods can be used in combination.

For the solution of the discrete system of equations we use the global three-dimensional stiffness, mass, and differenti-
ation matrices, A;B, and D (see [18,19] for definitions), to define discrete operators for the full system:
A ¼ diagðA;A;AÞ; B ¼ diagðB; B;BÞ; D ¼ ðDx;Dy;DzÞ; ð14Þ
and the discrete Helmholtz operator H ¼ aB þ mA. Appropriate boundary conditions should be included in these discrete
operators. This gives the discrete equations
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Hunþ1 �DT pnþ1 ¼ Bf nþ1; ð15aÞ
� Dunþ1 ¼ 0; ð15bÞ
where the change of sign in the pressure gradient term is caused by an integration by parts in the construction of the weak
form of the problem. Note that vectors of discrete point values are not written in bold, and that u in (15) represents the com-
bined vector of point values for all three velocity components.

This discrete system is solved efficiently by a pressure correction method, second order accurate in time (Section 6.2.3
[18]):
Hu� ¼ Bf nþ1 þDT pn; ð16aÞ
DB�1DTðpnþ1 � pnÞ ¼ �aDu� ð16bÞ

unþ1 ¼ u� þ 1
a
B�1DTðpnþ1 � pnÞ; ð16cÞ
where u� is an auxiliary velocity field that does not satisfy the continuity equation, i.e. Du� – 0.
The discrete Helmholtz operator is symmetric and diagonally dominant, since the mass matrix of the Legendre discret-

ization is diagonal, and can be efficiently solved by the conjugate gradient method with a diagonal (Jacobi) preconditioner.
Whereas the pressure operator DB�1DT is easily computed; it is ill-conditioned. The pressure system is solved by the pre-
conditioned conjugate gradient method, with a multilevel overlapping Schwarz preconditioner based on linear finite ele-
ments [27].

3.2. Discrete scale partitioning operators

The implementations of the variational multiscale LES method reported in [3–5] used global spectral methods. These
methods naturally employ an orthogonal modal basis, such that the scale partitioning becomes straightforward. Our spectral
element code uses a discretization based on the Legendre polynomials, which offer an orthogonal hierarchical basis on each
element.

The modal representation of a one-dimensional function wðxÞ on a single element is
whðxÞ ¼
XN�1

j¼0

cj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

2

r
LjðxÞ; �1 6 x 6 1; ð17Þ
where LjðxÞ is the jth order Legendre polynomial, and cj are the spectral coefficients. The factor
ffiffiffiffiffiffiffi
2jþ1

2

q
is used to normalize the

basis. The scaled Legendre polynomials represents a natural orthonormal basis, in which it is straightforward to perform the
scale partitioning. In this setting, it is natural to associate the low order polynomials with the large scales and the higher
order polynomials with the smaller scales.

Like the majority of the spectral element community, we do however use a nodal basis constructed from the Lagrangian
interpolant functions. In this case all the basis functions contain information on all Legendre modes, so the transformation to
the modal basis is needed:
Kc ¼ w; Kij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

2

r
LjðniÞ; ð18Þ
where c is the vector of spectral coefficients and w is the vector of function values at the GLL grid points fnjgN�1
j¼0 . Note that the

scale partitioning operators need only to be defined for the GLL (velocity) grid, since the small-scale pressure does not appear
in (11).

Let N ¼ N þ eN , such that N is the dimension of the polynomial basis for the large scales and eN is the dimension of the
small-scale space. The large-scale part of w can then be written as
w ¼ KTK�1w; ð19Þ
where T ¼ diagðIN;0eN Þ is the operator that annihilates the small-scale components in the modal basis. For notational conve-
nience, we define the large-scale extraction operator
L ¼ KTK�1;
while the corresponding small-scale extraction operator is
S ¼ I � L:
When tensor products of these operators are formed in higher dimensions, the resulting operators extract the compo-
nents with large-scale, or small-scale, respectively, components in all dimensions. The sum of these two operators does
not add up to the identity, so we choose to define the three-dimensional small-scale extraction operator to be
S ¼ I � ðLz � Ly � LxÞ: ð20Þ
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This is illustrated in two dimensions in Fig. 2. The resulting small-scale extraction operator returns functions with small-
scale structure in at least one dimension.

For multiple elements, the operators defined above are applied element-wise. This means that there is no global scale
extraction other than the sum of the extractions from each element. The result is that e.g. the small-scale extraction ~u in
(11) is discontinuous across element interfaces, and so are its derivatives. This is not unusual in spectral element methods,
in fact both the pressure (because of the ‘‘staggered” GL grid) and all derivatives of velocity and pressure share this property.
In the weak formulation, continuity of the velocity field is ensured through the ‘‘direct stiffness summation” over all ele-
ments, which calculates weighted averages of all terms at the element interfaces [18,19].

3.3. Properties of the large-small partition

As described above, the large-scale extraction operator corresponds to a sharp cut-off in the element-wise Legendre mod-
al space. In this section we shall illustrate the effect in the global Fourier space of this partitioning and discuss the relation
between element-wise Legendre modes and global Fourier modes.

We start by considering the highest Fourier wave numbers that can be represented on a given spectral element grid. A
minimum of p polynomials per wavelength are required for rapid convergence of the Legendre expansion of a Fourier com-
ponent [28]. Consequently, on a spectral element grid on ½0;2pi with M elements and N grid points on each element, higher
wave numbers than approximately NM=p can not be accurately represented.

Fig. 3 shows the local Legendre spectra of the first 8 global Fourier modes using M ¼ 4 elements with N ¼ 7 polynomials
on each element. More precisely, the coefficients cj in the modal representation (17) are calculated for the functions eikpx=4

with k ¼ 0; . . . ;7. Except the first mode, which is constant in both the Fourier and Legendre bases, each Fourier mode is rep-
resented by the full set of Legendre modes. The lowest Fourier modes have rapidly decaying Legendre spectra, which means
they will mainly be represented by the large-scale partition. However, the higher Fourier modes have significant contribu-
tions also from the lower Legendre modes, and they will consequently be split between the large- and small-scale partitions.
An important result is that the large-scale partition will be more dominant than for a corresponding sharp cut-off in the Fou-
rier space.

To further illustrate the properties of the large-small partitioning, we consider a ‘‘full” cosine spectrum, consisting of all
the well representable wave numbers,
Fig. 2
f ðxÞ ¼
XKmax

k¼0

cosðkxÞ: ð21Þ
The large-small partitioning by sharp cutoffs in the local Legendre expansions is applied using N ¼ 4 of the 7 modes (57%)
on each element as the large-scale space. The resulting large- and small-scale functions are globally sampled on a 128-point
regular grid and represented as cosine series. The results are given in Fig. 4 for two SEM grids on ½0;2pi with N ¼ 7 in both
cases, M ¼ 4 and Kmax ¼ 8 to the left, and M ¼ 10 and Kmax ¼ 20 to the right. These grids have the same number of elements
and grid points as the ‘‘Coarse-24” and ‘‘Coarse-60” grids used in the VMS LES calculations reported in Sections 4.4 and 4.6.
The ‘‘full scale” coefficients in Fig. 4 represent the sum of the partitions, and illustrates how well the function (21) is approx-
imated on each spectral element grid.

An important point illustrated by Fig. 4 is that although the scale partitioning in the Legendre space is done as a sharp cut-
off, the Fourier spectra of the two partitions are relatively smooth. The reason for this is that each of the original cosine terms
is represented by a combination of local Legendre modes on each element. It has been argued that a smooth spectral parti-
tioning is preferable. Sagaut and Levasseur [29] performed simulations of decaying isotropic turbulence and showed that a
smooth small-scale extraction operator reduces unphysical energy pile-up at the small scales. Meyers and Sagaut [30]
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. Large- and small-scale partitions in the 2-dimensional polynomial wavenumber space. The chosen partition operators are shown to the right.
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analyzed the dissipation properties of both traditional and Variational Multiscale Smagorinsky models, and showed that
smooth small-scale extraction operators lead to more physically robust VMS models.

The spectra of the large- and small-scale partitions are very similar on the two grids used in Fig. 4, and the gradual growth
in the small-scale spectrum starts around the cut-off percentage (57%), again showing that the impact of the small-scale
extraction is weaker when the sharp cut-off is applied to the local Legendre expansions. An effect of increasing the number
of elements is that more Fourier components can be represented, and the cut-off point for the large-small partitioning cor-
responds to a higher Fourier wavenumber. This could represent a problem if the cut-off frequency had a physical meaning,
but the terms ‘‘large” and ‘‘small” scales are only relative to the given resolution of a simulation, and hence it is meaningful to
designate fixed fractions of the local Legendre spectra to the two partitions.

In the same vein it can be discussed whether the cut-off point in the local Legendre space should vary in a more general
case with variable element sizes. A guideline for this could be to make the Fourier wavenumber corresponding to the
Legendre cut-off approximately constant throughout the whole domain. In the channel simulations described in Section
4 this situation occurs, as the elements are smaller in the wall-normal direction closer to the wall. We take the point-
of-view that the same fraction of the local Legendre spectrum should be used for partitioning for all elements, arguing
as above about the relativity of the large and small scales. If the cut-off point was changed to a lower order Legendre poly-
nomial for a smaller element close to a wall in order to maintain the same ‘‘physical” cut-off scale, the effect of refining the
element grid would be reduced.

3.4. Implementation of the model term

We now turn our attention to the implementation of the variational multiscale model term hrs ~w;2mTrs ~ui from (11).
Note that the turbulent eddy viscosity mT is not a material property of the fluid, but a property of the flow field and as such
varies through the flow domain.
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It is instructive to first consider the one-dimensional case with a constant eddy viscosity. Furthermore, for ease of expo-
sition, we only consider a single element. In this case, the model term above is
mT

Z
X

@ ~w
@x

@~u
@x

dx; x 2 X: ð22Þ
The Lagrangian interpolants used as test- and trial functions are denoted hiðxÞ, where hiðnjÞ ¼ dij when nj is a quadrature
grid point. A function vðxÞ is then represented by the interpolating polynomial
vhðxÞ ¼
XN�1

i¼0

v ihiðxÞ; v i ¼ vðniÞ: ð23Þ
Using the small-scale extraction operator defined above, we have
~uðxÞ ¼
XN�1

m¼0

XN�1

q¼0

SmquqhmðxÞ; ð24Þ
and for a given test function on Lagrange form ðwiðxÞ ¼ hiðxÞÞ
~wiðxÞ ¼
XN�1

p¼0

SpihpðxÞ: ð25Þ
Inserting these representations and using the discrete inner product based on Gauss–Lobatto quadrature, we obtain
hr ~wi;r~uih ¼
XN�1

r¼0

XN�1

p¼0

XN�1

m¼0

XN�1

q¼0

Spih
0
pðnrÞSmquqh0mðnrÞqr ¼

XN�1

p¼0

Spi

XN�1

m¼0

XN�1

q¼0

SmquqAx
pm ¼

XN�1

q¼0

ðST AxSÞiquq ¼ ðST AxSuÞi

¼ ððI � LÞT Ax~uÞi; ð26Þ
where Ax is the one-dimensional stiffness matrix. Inserting a single test function, as in (26), gives one row of the operator
acting on u, while using the whole set of test functions defines a discrete operator:
hr ~w;r~uih $ ðI � LÞT Ax~u: ð27Þ
It is easily seen from the penultimate line of (26) that (27) represents a symmetric operator acting on u.
The corresponding operator in three dimensions is
hr ~w;r~uiih $ ððB
z � By � AxÞ � ðLzT � LyT � LxTÞðBz � By � AxÞÞ~ui þ ððBz � Ay � BxÞ � ðLzT � LyT � LxTÞðBz � Ay � BxÞÞ~ui

þ ððAz � By � BxÞ � ðLzT � LyT � LxTÞðAz � By � BxÞÞ~ui; ð28Þ
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for each velocity component ui; i ¼ 1;2;3:
Following the procedure for discretization of terms with spatially dependent coefficients described in [18], we can write
r ~w;2mTðx; y; zÞr~uih ih $ 2 ðIz � Iy � DxTÞVðIz � Iy � DxÞ~ui � 2 ðLzT � LyT � ðDxLxÞTÞVðIz � Iy � DxÞ~ui þ 2 ðIz � DyT � IxÞ
	 VðIz � Dy � IxÞ~ui � 2 ðLzT � ðDyLyÞT � LxTÞVðIz � Dy � IxÞ~ui þ 2 ðDzT � Iy � IxÞVðDz � Iy � IxÞ~ui

� 2 ððDzLzÞT � LyT � LxTÞVðDz � Iy � IxÞ~ui: ð29Þ
In this equation, D denotes the GLL derivation matrix in each direction. Furthermore, the values of the eddy viscosity are
lumped with the GLL integration weights in the diagonal matrix V with the entries mrst

T qx
rq

y
sqz

t , in which rst are the grid point
indices and V is ordered to be consistent with the ordering of the element grid points.

We are now finally ready to consider the model term in the form given in (11). Since the product of a symmetric and an
anti-symmetric tensor is zero, we only need to compute the inner product
hr ~w;2mTrs ~ui ¼ @ ~w
@xj

; mT
@~ui

@xj

� �
þ @ ~w

@xj
; mT

@~uj

@xi

� �
: ð30Þ
In tensor product form, the VMS small-scale dissipation term for the first component of the momentum equation
becomes
hr ~w;2mTðx; y; zÞrs~u1ih $ 2fðIz � Iy � DxTÞ � ðLzT � LyT � ðDxLxÞTÞgVðIz � Iy � DxÞ~u1 þ fðIz � DyT � IxÞ
� ðLzT � ðDyLyÞT � LxTÞgVðIz � Dy � IxÞ~u1 þ fðDzT � Iy � IxÞ � ððDzLzÞT � LyT � LxTÞg
	 VðDz � Iy � IxÞ~u1 þ fðIz � DyT � IxÞ � ðLzT � ðDyLyÞT � LxTÞgVðIz � Iy � DxÞ~u2

þ fðDzT � Iy � IxÞ � ððDzLzÞT � LyT � LxTÞgVðIz � Iy � DxÞ~u3 ð31Þ
and we obtain similar expressions for the other two components. The couplings between the velocity components, intro-
duced by the second term of (30), are handled by including the cross terms in the explicit part of the time splitting, leaving
the Helmholtz problem for the velocity components uncoupled.

As seen from (31), the calculation of the VMS LES model terms requires several additional operations. The increase in total
computational work will vary with the size and complexity of the simulation. For the cases considered in this paper the in-
crease is in the range 20–40%, with the smallest relative increase for the largest simulations. To put these numbers into per-
spective, we note that a conservative estimate of the computational complexity of the three-dimensional spectral element
method is OðK3N4Þ, which gives a 70% increase in computational time by increasing the polynomial order ðN � 1Þ from 6 to 7,
and about the same by increasing the number of elements in each dimension ðKÞ from 5 to 6.

3.5. Smagorinsky model

The eddy viscosity mTðx; tÞ is chosen in [2] as a Smagorinsky-type function:
mT ¼ ðC 0SD
0Þ2jrs ~uj; ð32Þ
or alternatively
mT ¼ ðC 0SD
0Þ2jrs �uj: ð33Þ
The former was labeled ‘‘small-small” in [3], while the latter was labeled ‘‘large-small”.
As the purpose of the model term is to approximate the effect of the unresolved scales on the small scales, it is argued in

[2] that (32) is more consistent with the physical basis of the method, whereas (33) appears to be a computationally attrac-
tive alternative. The results in [3,4] show that good results are obtained with both methods. However, in terms of the spec-
tral element implementation, the ‘‘large-small” form is not a computational simplification. A more attractive form is instead
the ‘‘full-small” term, as proposed in Refs. [17,31],
mT ¼ ðC 0SD
0Þ2jrsuj; ð34Þ
in which the scale extraction operators are avoided completely.
The term jrsuj can be written out as
jrsuj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

X3

i¼1

X3

j¼1

@ui

@xj
þ @uj

@xi

� �2
vuut : ð35Þ
We discuss the choice of values for the parameters C0S and D0 in Section 4.3.

3.6. Related implementations

Among the previous implementations of the VMS LES method, the work of Munts et al. [8] is most closely related to the
present method. In [8], a time-discontinuous Galerkin method with a modal basis of Jacobi polynomials P1;1 is applied to the
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compressible Navier–Stokes equations in conservation form, and a Smagorinsky term corresponding to the ‘‘small-small”
formulation is used. The discretization is varied in the ‘‘hp”-style, meaning that both the size of the elements, h, and the poly-
nomial order, p, can vary. The highest polynomial order used in the paper is 3, and the best results are found when the small
scales are represented only by the highest order polynomials.

Collis [32] describes an implementation of VMS in a Discontinuous Galerkin method for the compressible Navier–Stokes
equations. This method is similar to the present method in that it employs polynomial bases to span the solution space in
each element, and in that scale partitioning is performed in the polynomial wavenumber space.
4. Computational results

4.1. Channel flow

Fully developed turbulent flow in a plane channel is the simplest case of an inhomogeneous turbulence field, and this
configuration has therefore been extensively used to assess the performance of turbulence models. The fluid domain is
bounded by two infinitely large parallel solid walls, and the flow is driven by a constant mean pressure gradient in the
streamwise ðxÞ direction. The boundary conditions are no-slip at the solid walls, and periodicity is imposed in the streamwise
and spanwise ðzÞ directions, respectively. The wall-normal direction is thus y, and the channel half-height is denoted h.

The instantaneous flow field is three-dimensional and time-dependent, but the ensemble averaged (mean) flow field is
unidirectional and statistically steady. If we let h�i denote the ensemble average, we therefore have U ¼ hui ¼ ðUðyÞ;0;0Þ.
The constant pressure gradient that is forcing the flow is included as a source term, hence the mean pressure P ¼ hpi ¼ 0.

The friction velocity, us, is defined by
u2
s � m � dU

dy

����
wall

; ð36Þ
and this is used in the definition of the frictional Reynolds number: Res � ush=m. The friction velocity is related to the total
frictional forces acting on the walls; the right-hand side of (36) is simply the ensemble averaged wall shear stress. Variables
nondimensionalized in wall units, i.e. scaled by using kinematic viscosity m and friction velocity us, are marked with the
superscript +. The forcing pressure gradient is related to the Reynolds number by
� dP
dx

� �
¼ qu2

s0

h
¼ qm2

h3 Re2
s0: ð37Þ
Integrating the x-component of the ensemble averaged Navier–Stokes equations in the wall-normal direction yields
0 ¼ �q�1 dP
dx

� �
yþ m

dU
dy
� hu0v 0i: ð38Þ
Hence, in fully developed plane channel flow the sum of the viscous ðmdU=dyÞ and turbulent ð�hu0v 0iÞ stresses must vary
linearly across the channel. This is a particularly useful analytical result that can be used a posteriori to assess the accuracy of
the numerical solution. The turbulent shear stress contribution dominates across the channel except in a region very close to
the wall where the viscous shear stress dominates, with mdU=dy! u2

s as the wall is approached. This region is usually re-
ferred to as the viscous sub-layer, and its thickness decreases with increasing Reynolds number.

In shear generated turbulence, turbulence energy is extracted from the mean flow field by mean shear. Turbulent kinetic
energy is subsequently dissipated into heat by the action of molecular viscosity. The latter process takes place at the smallest
scales, and this physical process constitutes in essence the motivation for subgrid scale stress modelling in LES. Fully devel-
oped channel flow considered in this study constitutes a turbulent shear flow close to equilibrium, i.e. where the rate of pro-
duction of turbulent kinetic energy is approximately balanced by the rate of viscous dissipation. This is true except very close
to the wall where diffusive processes become important. In order to provide a measure of the performance of the VMS LES
model it is therefore relevant to compare the level of turbulent kinetic energy integrated across the channel, i.e.
Z 2h

0
k dy ¼

Z 2h

0

1
2
ðhu2i þ hv2i þ hw2iÞ dy ¼ ku þ kv þ kw; ð39Þ
with the corresponding mean kinetic energy, i.e.
Z 2h

0
K dy ¼

Z 2h

0

1
2
ðU2 þ V2 þW2Þ dy ¼ KU þ KV þ KW : ð40Þ
We consider three different Reynolds numbers: Res ¼ 180;550, and 950, in order to assess the approach in not only low,
but also moderate Reynolds number flows. The VMS LES computations are compared with spectral element simulations with
the dynamic Smagorinsky model using the same resolution and with reference solutions obtained from direct numerical
simulations. The computational domain of 8	 2	 4 length units is used for all the simulations, even though the domain
sizes varies for the reference solutions. To check the dependence on the domain size, we performed an additional simulation
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with a larger domain for Res ¼ 550 – the case with the largest difference in domain size between our simulations and the
reference domain. The results of that test, presented in Section 4.5, show very little influence from this variation in domain
size on the variables presented here.

4.2. Reference simulations

4.2.1. Direct numerical simulations
As a first step towards our goal, to implement and evaluate the variational multiscale LES method in a high order spectral

element flow solver, we performed a DNS to validate the code. To this end, we considered channel flow at Res ¼ 180, which
corresponds to the well-known benchmark simulations reported by Kim et al. [36]. We performed the actual comparison of
the results with the updated data set reported by Moser et al. [33] who used a fully spectral Fourier/Chebyshev method with
128	 129	 128 grid points.

The simulation was carried out on a computational domain that approximately corresponds to the reference simula-
tion [33,36], see Table 1 for details. Across the channel we used 16 non-uniformly distributed elements with 8 nodal
points in each element. It was advised in [19] that the wall-normal point distribution should mimic the Gauss–Lob-
atto–Chebyshev (GLC) integration points. We used this as a starting point for the element distribution in the wall-normal
direction, but to improve the resolution in the region 10 < yþ < 20, the GLC points fnkgK

k¼0 were ‘‘stretched” towards the
walls, using
Table 1
Parame
the nom

Domain

Total n

Grid sp
~nk ¼ sgnðnkÞ � ð1� ð1� jnkjÞ1:2Þ: ð41Þ
The standard GLL/GL points were used inside each element, without further mapping. In the streamwise and spanwise
directions we used 16	 16 uniformly distributed elements with 8	 8 nodal points per element. Thus, the total number
of nodal points amounts to 112	 113	 112 in the streamwise, wall-normal, and spanwise directions, respectively. The solu-
tion was advanced in time with a time-step corresponding to 0.18 viscous time-units ðm=u2

sÞ, and with 50% polynomial fil-
tering [25] on each time-step. The simulation was initiated by a flow field obtained from an existing plane channel flow
solution obtained by a finite-volume code. The flow then evolved for approximately 54 flow-through times before a fully
developed state was achieved. The results presented here were obtained by collecting statistics over approximately 20
flow-through times. The flow statistics are averaged both spatially over the homogeneous – streamwise ðxÞ and spanwise
ðzÞ – directions, and in time. Homogeneity in a specific direction physically implies that statistical correlations comprising
fluctuating quantities are spatially constant in that direction.

4.2.2. Under-resolved no-model simulations
As a precursor to the LES computations that are presented below, we also performed a coarser simulation, with 6	 6	 6

elements, to assess the performance in a case that is spatially under-resolved. The element interfaces in the wall-normal
direction were spaced according to a coarse Gauss–Lobatto–Chebyshev grid. In the streamwise and spanwise directions,
we used a uniform element grid. In each element, we used 7	 7	 7 nodal GLL points, giving a total resolution of
36	 37	 36 nodal points. This mesh is referred to as Coarse-36 in Table 2. In this case we used 2% polynomial filtering
to stabilize the simulation, and the same time-step as for the DNS. Otherwise, subgrid stresses were not explicitly accounted
for. This computation can therefore either be interpreted as a ‘‘No-model” simulation or as a ‘‘Polynomial filtering-as-turbu-
lence-model” simulation.
ters for the present DNS and the reference simulations by Moser et al. [33] and by del Álamo et al. [34,35]. Grid spacing in wall units are calculated from
inal Res .

Present Moser del Álamo del Álamo
DNS et al. & Jiménez et al.

Nominal Res 180 180 550 950
Actual Res 178.83 178.13 546.74 933.96

dimensions Lx 8 4p 8p 8p
Ly 2 2 2 2
Lz 4 4

3 p 4p 3p

umber of grid points Nx 112 128 1536 3072
Ny 113 129 257 385
Nz 112 128 1536 2304

acing Dxþ mean 12.9 17.7 9.0 8.9
Dyþ min 0.10 0.054 0.041 0.032
Dyþ max 8.6 4.4 6.7 7.8
Dzþ mean 6.4 5.9 4.5 4.5

Elements 163 – – –

Pol. order ðN � 1Þ 7 – – –
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4.2.3. Dynamic Smagorinsky simulations
We have also performed simulations with the dynamic Smagorinsky model [37] to obtain an additional point of reference

for the VMS LES results presented below. Blackburn and Schmidt [38] discuss implementation of the dynamic model in spec-
tral element discretizations.

We implemented the dynamic model using low-pass filtering in the Legendre polynomial basis as the test filter with the
filter ratio Dtest=D ¼ 2, i.e. the test-filtered field comprises half of the modes of the resolved (filtered) field. The turbulent
eddy viscosity is similar to the full-small term given in Eq. (34) with the exception that length scale l2 ¼ ðCsDÞ2 in this case
is determined adaptively. To avoid negative values of the eddy viscosity that tend to de-stabilize the computations, we per-
form low-pass filtering in time of the estimated ðCsDÞ2 through the two-point recurrence [39]
Table 2
Grid pa

Domain

Total n

Grid sp

� ‘No-m
� VMS
ðCsDÞ2ðnþ1Þ ¼ �ðCsDÞ2ð�Þ þ ð1� �ÞðCsDÞ2ðnÞ;
where ðCsDÞ2ð�Þ denotes the current estimate. This filtering eliminates most of the negative values; finally we use clipping of
the remainder to ensure a non-negative eddy viscosity.

To validate the implementation of the dynamical model we performed simulations of the channel flow at Res ¼ 180 using
the same mesh (Coarse-36) and time-step as in the under-resolved simulation specified above. To stabilize the simulation we
used over-integration and no polynomial filtering.

4.2.4. Results
We show the mean velocity and second order statistics in Figs. 6–9. Note that in these, and in all subsequent figures, the

results are scaled against the nominal friction velocity us0. The resolved DNS results compare very well with the benchmark
data, apart from a slight deviation in the buffer region ð20 < yþ < 50Þ. In order to assess the accuracy more quantitatively the
computed Reynolds number is compared to the imposed Res ¼ 180. The actual computed Reynolds number is Res ¼ 178:8,
i.e. within 0.7% of the prescribed value. Moser et al. [33] reported Res ¼ 178:1.

The turbulent-to-mean kinetic energy ratio displayed in Table 3 obtained in the present study, k=K ¼ 0:01394, is close to
the benchmark value of ðk=KÞRef ¼ 0:01378, and the same goes for the turbulence anisotropies, ku=k; kv=k, and kw=k.

It is believed that the accuracy of the present DNS could be even further improved by simply collecting statistics for a
longer period of time. This was, however, not considered to be necessary. We conclude that the present results are in good
correspondence with the benchmark data, thus establishing solid confidence in the numerical method.

The spatially under-resolved simulation give a computed Reynolds number Res ¼ 177:9, i.e. within 1.2% of the prescribed
value. The second order statistics for the velocity components and the kinetic energy measures also agree well with the ref-
erence, as we can see in Figs. 7, 8 and Table 3. This simulation can therefore be considered a ‘‘quasi-DNS”, and this seems to
indicate that the channel flow at Res ¼ 180 is not a sufficiently challenging case for the assessment of turbulence models
since the resolution required to obtain acceptable solutions is not severe. We have therefore used even coarser meshes in
the VMS LES computations reported below. The most testing of the quantities plotted here is the fluctuating pressure, shown
in Fig. 9, as the pressure is calculated from the Poisson-like Eq. (16b), with velocity gradients on the right-hand side. Any
under-resolved simulation will yield significantly worse results in this case.

For each of the VMS LES test cases reported below, we also performed simulations without the VMS model, but with 2%
polynomial filtering which was necessary to stabilize those calculations. The global measures for these calculations are given
in Table 3.

The simulation with the dynamic Smagorinsky model on the Coarse-36 mesh give a computed Reynolds number
Res ¼ 167:7, and both the second order statistics and the kinetic energy measures agree well with the reference data. The
rameters for the coarse grid simulations. Grid spacing in wall units are calculated from the nominal Res .

Coarse- Coarse- Coarse- Coarse-
24�,� 36� 42�,� 60�,�

Nominal Res 180 180 550 950

dimensions Lx 8 8 8 8
Ly 2 2 2 2
Lz 4 4 4 4

umber of grid points Nx 24 36 42 60
Ny 25 37 43 61
Nz 24 36 42 60

acing Dxþ mean 60.0 40.0 104.8 126.7
Dyþ min 4.5 2.0 4.6 3.9
Dyþ max 29.8 21.1 57.4 68.8
Dzþ mean 30.0 20.0 52.4 63.3

Elements 43 63 73 103

Pol. order ðN � 1Þ 6 6 6 6

odel’ and dynamic Smagorinsky computations.
LES computations.



 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

 0  0.2  0.4  0.6  0.8  1
y

ν(dU/dy)/u2τ0

-<uv>/u2
τ0

Present DNS
Coarse-36

Dynamic Smagorinsky
Moser et al.

Fig. 7. Res ¼ 180: variation of mean viscous shear and the turbulent shear stress across half the channel, compared with the reference solution of Moser
et al. [33].

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

<
u i

2 >
1/

2 /u
τ0

y

u’

w’

v’

Present DNS
Coarse-36

Dynamic Smagorinsky
Moser et al.

Fig. 8. Res ¼ 180: variation of streamwise ðu0Þ, spanwise ðv 0 Þ, and wall-normal ðw0Þ root-mean-square velocity fluctuations across half the channel,
compared with the reference solution of Moser et al. [33].

 0

 5

 10

 15

 20

 25

 0.01  0.1  1  10  100

U
/u

τ0

y+

Present DNS (Reτ = 178.8)
Coarse-36 (Reτ = 177.9)

Dynamic Smagorinsky (Reτ = 167.7)
Moser et al. (Reτ = 178.1)

Fig. 6. Res ¼ 180: variation of the mean velocity across half the channel, compared with the reference solution of Moser et al. [33].

7346 C.E. Wasberg et al. / Journal of Computational Physics 228 (2009) 7333–7356



 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  0.2  0.4  0.6  0.8  1

<
pp

>
1/

2 /ρ
u2 τ0

y

Present DNS
Coarse-36

Dynamic Smagorinsky
Moser et al.

Fig. 9. Res ¼ 180: variation of the root-mean-square pressure fluctuations across half the channel, compared with the reference solution of Moser et al.
[33].

C.E. Wasberg et al. / Journal of Computational Physics 228 (2009) 7333–7356 7347
results also appear to agree well with results obtained with other implementations of the dynamic Smagorinsky model with
comparable resolution – see for example [4,40] for simulations using global spectral methods.

4.3. VMS LES calculations

In order to test the performance of the VMS LES model, the computational grid was chosen significantly coarser than what
would give reasonably good results without a subgrid scale model at all (see the previous section).

The main objective of this paper is to demonstrate a robust implementation of the VMS LES method. In order to assess the
performace of the VMS method we will, for each case, present comparisons both with the reference DNS data and with the
results from simulations with the dynamic Smagorinsky model using the same resolution. For other comparisons between
VMS LES and other LES results in the framework of other discretization methods, we refer to e.g. [4,5,10,13,14,31,41,42,40].

The element interfaces in the wall-normal direction were given by a coarse Gauss–Lobatto–Chebyshev grid. The number
of elements in the spectral element grids for the higher Reynolds numbers were chosen such that the first element interface
in the wall-normal direction was placed at approximately the same value of yþ for all the cases, see the illustrations in Fig. 5.
This implies that the physical distance from the first element interface to the wall is reduced as the Reynolds number in-
creases. To reduce the number of parameters, the polynomial degree was fixed for all the VMS LES runs; only the number
of elements was changed. A summary of the grid parameters used for the various Reynolds numbers is presented in
Table 2.
Table 3
Computed Res , components of turbulent kinetic energy, and ratio of turbulent-to-mean kinetic energy ðk=KÞ in plane channel simulations.

Case Grid points Res 1
2 hu2i=k 1

2 hv2i=k 1
2 hw2i=k k=K

Nominal Res ¼ 180
Reference DNS [33] 128	 129	 128 178.1 0.6578 0.1348 0.2074 0.013780
SEM DNS 112	 113	 112 178.8 0.6579 0.1353 0.2069 0.013940
SEM VMS LES 24	 25	 24 189.6 0.6616 0.1302 0.2082 0.017187
SEM No model� 24	 25	 24 186.5 0.6738 0.1265 0.1997 0.022180
SEM Dynamic 24	 25	 24 158.9 0.6279 0.1361 0.2360 0.020650
SEM No model� 36	 37	 36 177.9 0.6577 0.1300 0.2123 0.015658
SEM Dynamic 36	 37	 36 167.7 0.6405 0.1385 0.2210 0.016224

Nominal Res ¼ 550
Reference DNS [34] 1536	 257	 1536 546.7 0.5604 0.1808 0.2589 0.010780
SEM VMS LES 42	 43	 42 552.6 0.5622 0.1860 0.2518 0.012423
SEM No model� 42	 43	 42 473.3 0.5091 0.2227 0.2682 0.025680
SEM Dynamic 42	 43	 42 428.7 0.4870 0.2346 0.2784 0.025710

Nominal Res ¼ 950
Reference DNS [35] 3072	 385	 2304 934.0 0.5580 0.1848 0.2571 0.009758
SEM VMS LES 60	 61	 60 884.2 0.5249 0.2104 0.2647 0.010755
SEM No model� 60	 61	 60 781.2 0.4739 0.2416 0.2845 0.022911
SEM Dynamic 60	 61	 60 739.1 0.4609 0.2496 0.2895 0.025581

� No-model simulations were stabilised by 2% polynomial filtering.
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All the VMS LES results presented here were obtained using over-integration in order to achieve stable simulations on
such coarse grids. The polynomial filtering [25], did actually reduce rather than improve the quality of the results when used
in combination with the VMS LES model, and was therefore not used in these computations. An explanation for this can be
that the transfer of energy between the highest order polynomials described in Section 3.1 interferes with the VMS LES mod-
el term and thus disturbs the model effect. The time-step was 0.0002 for all the coarse grid simulations.

The Smagorinsky model term given in Eqs. (32)–(34), contains two model parameters: The Smagorinsky constant, C0S,
and the Smagorinsky length scale, D0. For plane channel flow, the traditional choice of the Smagorinsky constant is C0S ¼ 0:1
[43], and this value has also been used in the VMS calculations reported in Refs. [4,5]. We have also used this value. Note
however that we performed a sensitivity test with respect to this parameter that is reported in Section 4.4. For the Sma-
gorinsky length scale, we calculated D0 for each element as the geometric average of the mean grid spacing in each direc-
tion. John and Roland [41] compared length scales based on the geometric average and the shortest edge of each element
in a low order Finite Element VMS method. They found the results for the two formulations to be almost indistinguishable,
whereas they had a large impact on the results of non-multiscale simulations using the Smagorinsky model with van Dri-
est damping.

4.4. VMS LES results for Res ¼ 180

A number of combinations of the scale partitioning parameter, N, and the various Smagorinsky forms were tested at
Res ¼ 180, and the best choice was subsequently used for additional simulations at Res ¼ 550 and Res ¼ 950. The spec-
tral element grid for Res ¼ 180 was chosen as the ‘‘Coarse-24” grid described in Table 2. The scale partitioning cut-off
mode was the same for all elements, even though the element size varied in the wall-normal direction. Beside using
different forms of the Smagorinsky term (32)–(34), the scale partitioning was varied as well in the simulations. With
a local grid consisting of 7 grid points in each direction on each element, we used N ¼ 4;N ¼ 5, and N ¼ 6 for the
large-scale extraction described in Section 3.2. These values correspond to approximately 57%, 71%, and 86%, respec-
tively, of the one-dimensional Legendre polynomial spectrum. In three dimensions, the resulting large-scale spaces con-
sist of approximately 19%, 35%, and 63% of the modes, respectively. Because of the relatively low polynomial order
ðN ¼ 7Þ used in these simulations, varying N has quite large influence on the solution. The results shown in Figs. 10
and 11 suggest that N ¼ 5 constitutes the best choice in this case, so this is used for the remaining simulations for
Res ¼ 180. To better study the sensitivity to N;N should be at least 12, which would give ‘‘too good” results for the rel-
atively simple case of Res ¼ 180. Therefore, a more detailed study of the sensitivity to the scale partitioning is done for
Res ¼ 550 and discussed in Section 4.5.

The different forms of the Smagorinsky term gave similar results at the lowest Res ¼ 180, as can be seen in Figs. 12–14.
The ‘‘large-small” Smagorinsky form (33) was employed at the two lowest Res and the results were almost indistinguishable
from the ‘‘full-small” (34) results. Results obtained with the former are therefore not included here.

The sensitivity to the chosen constant value of the Smagorinsky constant C0S is tested by doubling and halving it. Results
for the ‘‘full-small” Smagorinsky form are shown in Figs. 15 and 16. C0S ¼ 0:2 improves the mean velocity profile, while
C0S ¼ 0:05 gives markedly worse results for the wall-normal and spanwise RMS velocity fluctuations – similar to the results
without VMS model (not shown here). The conclusion of this simple sensitivity test is that C0S ¼ 0:1 is a reasonable choice,
and smaller values should not be used.
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4.5. VMS LES results for Res ¼ 550

The effect of the ‘‘full-small” and ‘‘small-small” becomes evident at Res ¼ 550, where the former appears to perform bet-
ter, see Figs. 17–19. These simulations are run on the ‘‘Coarse-42” grid described in Table 2. The mean velocity profile and the
turbulent shear stress are captured well by the ‘‘full-small” model, whereas the turbulent kinetic energy is somewhat over-
predicted (especially due to the overprediction of hu2i). The ‘‘small-small” model predicts even higher turbulence levels
which is reflected by a substantial underprediction of the mean velocity across the channel.

To study the effect of the scale partitioning parameter N, a set of simulations with higher polynomial order was run. The
grid used has 4 elements in each direction and N ¼ 12 grid points in each direction. As for the other VMS LES grids, the ele-
ment interfaces in the wall-normal direction are given by Gauss–Lobatto–Chebyshev grid points. The test in Section 4.4
showed that using 71% of the modes in the one-dimensional Legendre spectrum for the large-scale space worked better than
57% or 86%. In this test, with 12 polynomial modes, the variation between the results are smaller and the trends are easier to
see. Figs. 20 and 21 show that the simulations with N ¼ 8;9, and 10 give the best results, corresponding to 67%, 75%, and 83%
of the modes, respectively. This is consistent with the previous test, and we can give a recommendation of using around
three quarters of the modes in the one-dimensional Legendre spectrum for the large-scale space.

As mentioned in Section 4.3, the reference domain is larger than the present domain, and it should be investigated how
this influences the results. For Res ¼ 550, the difference in size is a factor p in the streamwise and spanwise directions. A
simulation with doubled dimensions in these directions (to a 16	 2	 8-domain) was also conducted, and results are shown
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in Figs. 22 and 23. The conclusion is that the doubling of the domain size in the streamwise and spanwise direction has prac-
tically no impact on the results presented here, so we assume that a further factor of p=2 to obtain the reference domain
would not change the results significantly.

4.6. VMS LES results for Res ¼ 950

At Res ¼ 950 only the ‘‘full-small” Smagorinsky form was used, since this form appeared to perform better than the
‘small-small” variant at Res ¼ 550 The grid was ‘‘Coarse-60” from Table 2. The present results compare relatively well with
the reference data [35], although the turbulent shear stress, and thus also the turbulent kinetic energy, is somewhat over-
predicted, see Figs. 24–26. These results suggest that the performance of the present VMS LES ‘‘full-small” model is rather
robust.

The turbulent-to-mean kinetic energy ratio, k=K , integrated across the channel, exhibits a monotonic decrease with in-
creased Reynolds number, both for the benchmark data and the VMS data, see Table 3. The model overpredicts in general
the kinetic energy ratio, most severely at the lowest Reynolds number. These results suggest that the subgrid scale model
is not dissipative enough.

5. Concluding remarks

The variational multiscale large eddy simulation method has been implemented within the framework of a spectral ele-
ment method. The presented scale partitioning method was shown to produce a gradual introduction of the small-scale
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model terms. It is documented that this is favourable to a sharp cut-off at a given point in the global spectral space [29,30].
The computational overhead for the method was 20–40% for the applications considered here. This must be considered to be
acceptable, as even small increases in the spatial resolution of the spectral element method are more computationally
demanding. Good results have been obtained – with the simplest possible small-scale dissipation model, and with grid den-
sities as low as 0.06% of the reference simulation grid density – for fully developed plane channel flows up to Res ¼ 950.

Simulations with the dynamic Smagorinsky model were also performed at the selected Reynolds numbers and resolu-
tions. In all cases the dynamic model significantly underpredicts the computed wall friction. At Res ¼ 180 the mean and
RMS profiles computed with the dynamic model agree well with the reference data and the VMS solution. At the higher
Res, however, the VMS results appear to be in better agreement with the reference data than the results obtained with
the dynamic model. For the cases considered here, the simulation time for the dynamic model is 10–20% longer than for
the VMS model. The computational complexity of the two models are therefore largely comparable.

In closing, we observe that the traditional fully developed plane channel flow at Res ¼ 180 does not seem to provide suf-
ficient challenges for the testing of turbulence models, since the resolution requirement for a ‘‘quasi-DNS” at this very low
Reynolds number is not severe.
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